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In the two-dimensional plane, a set of points Xl' X2 , ••• , Xn (called "nodes") is
given. It is desired to interpolate arbitrary data given on the nodes by continuous
functions having piecewise-linear (".9'2''') structure. For this purpose, one can
employ the space of all .9'2'-functions on a rectangular grid generated by the nodes.
We study this space first. Next, we investigate the special .9'2'-functions that are
linear combinations of functions hi(x) = II x - Xi Ill, in which the It-norm on [J;l2 is
empl9yed. The "dual" case, involving the two-dimensional loo-norm, is included in
our results, as are certain general interpolating functions of the form

(s, t)f->F(s-s,}+G(t-t,).

© 1989 Academic Press, Inc.

1. INTRODUCTION

Throughout the paper, JV denotes a set of n distinct points in 1R 2

designated by Xl' X 2 , ... , Xn- These points are called nodes. (In Section 9, we
consider nodes in IR d for d~ 2.) The basic problem of two-dimensional
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PIECEWISE-LINEAR INTERPOLATION 203

interpolation addressed here is as follows. A "data-function" d: JV -+ IR is
given, and we seek a function f: 1R 2 -+ IR such that f IJV = d; Le., f(x;) = di

for i = 1, 2, ..., n. Such a function f is said to interpolate d. Usually the
search for f is restricted to a class of functions that (a) are easily computed
and (b) have some prescribed smoothness.

If the set of nodes has no special structure capable of being exploited,
then this problem is called scattered data interpolation. Many methods
proposed for this problem are discussed in the surveys of Schumaker [13J
and Franke [4, 5]. One method that has been used successfully employs
radial basis functions. In the simplest case of this, one seeks an interpolant
in the linear space generated by the n functions hj(x) = II x - x j II (1 ~j ~ n),
where the norm can be any convenient one on 1R 2

• The existence of an
interpolant f =L;~ I cjhj for arbitrary data depends upon the invertibility
of the interpolation matrix A, whose elements are Aij = hix;). For the
Euclidean norm, a result of Schoenberg [11 J asserts that the matrix A is
always nonsingular. (Schoenberg's result holds in any inner-product space.)
Micchelli [9] proved a striking generalization of this result in which hj can
be replaced by hix)=F(llx-xjI12), where F comes from a certain class
of functions. The papers of Powell [10J, Jackson [6J, Madych and
Nelson [7, 8J, Dyn [IJ, and Dyn et al. [2J contain further important con­
tributions to this field. Practical experience with this type of interpolation
is reported by Franke [3,4].

We consider radial basis functions that are generated by the II-norm.
Thus, if x = (s, t) and Xi = (Si' t i ), then

(1 ~ i ~ n).

Since these functions are piecewise linear on a rectangular grid, we devote
several sections (2-5) to a study of piecewise linear functions in general.
Sections 6, 7, 9 concern the space of radial basis functions, and emphasize
its role as a linear subspace in the space of piecewise linear functions.
Section 8 is devoted to radial basis functions employing the I",-norm. Our
results provide a geometric property of JV that is necessary and sufficient
for the invertibility of the interpolation matrix.

The following notation is adopted. Orthogonal projections onto the
coordinate axes are denoted by P and Q. Explicitly,

Px=s, Qx=t, X=(S,t)EIR 2
.

The projections of JV are denoted by

P(JV) = {O' I> 0'2' , 0'm},

Q( JV) = {r l , r 2 , , rd,

640/59/2-6



204 DYN, LIGHT, AND CHENEY

The rectangular grid and the rectangular hull determined by the node set JV
are the sets

It is assumed always that #JV=n(i.e., the nodes X!"",X n are distinct)
and that m ~ 2, k ~ 2.

2. THE SPACE f!J2 OF PIECEWISE LINEAR FUNCTIONS

The horizontal and vertical lines through the points of JV divide the
plane into rectangles, some of which are unbounded. These rectangles are
expressible as Cartesian products of intervals. There are m + 1 such inter­
vals on the s-axis and there are k + 1 intervals on the t-axis. The space
f!J2(JV), or simply f!J2, is defined to be the space of all continuous func­
tions I: 1R 2

--+ IR such that the restriction of1 to each of these rectangles is
a linear function of (s, t).

The dimension of the space of all piecewise linear functions is obviously
3(m + l)(k + 1) since there are (m + l)(k + 1) rectangles, and a linear
function has three coefficients. On the other hand, if continuity is imposed,
there will be three conditions required at each grid point to ensure that the
linear functions in four adjacent rectangles are equal there. There are 3mk
conditions of this type. Also, on each of the semi-infinite lines which
emanate from RH one continuity condition must be imposed. This
provides 2(m + k) further conditions. The number of parameters minus the
number of conditions is m + k + 3, and one can prove that this is indeed
the dimension of f!lJ2. To this end, we now define 0'o, '0' O'm+[' and 'k+1

to be any real numbers satisfying

2.1. THEOREM. A f!J2 -function is uniquely determined by assigning to it
arbitrary values at the points (0'0' ,) and (ai' '0)' where O~j~k+ 1 and
1~ i ~ m + 1. Consequently, dim( f!lJ2) = m + k + 3.

Proof Let IE f!lJ2. By 5.1,fcan be written

I(s, t) = u(s) + v(t),

where u is a piecewise linear function in C( IR) having knots 0'1' 0'2' ..., am,
and v is a piecewise linear function in C(IR) having knots 'I, '2, ..., 'k' By
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adding a constant to u and subtracting it from v we can arrange that
u(O"o) = O. Then v is uniquely determined by the equation

o:::;;j:::;;k + 1.

After that, u is uniquely specified by the equation

Theorem 2.1 is already known but is included here for completeness. See
Schumaker [15].

2.2. COROLLARY. Let S= {O"o, 0"1> .•. , O"m+d and T= {to, 'I' ..., 'k+d·
Let Ilo(S) and Ilo(T) denote the spaces of constant functions on S
and T, respectively. The space f!)2, when interpreted as a subspace of
C([O"o, O"m+l] X['0' 'k+I]), is isometrically isomorphic to laJS)®Ilo(T) +
Ilo(S) ® loo(T) as a subspace of loo(S x T).

2.3. THEOREM. When f!)2 is restricted to the rectangular hull,
[0" I> 0"m] X [, I' ,d, its dimension is m + k - 1.

Proof This follows at once from 2.1 upon changing k to k - 2 and m
to m -2. I

2.4. THEOREM. Every f!)2 -function can be written uniquely in the form

m k

f(s, t)= L ai IS-ail + L Pi It-'il +as+bt+c. (1)
i=1 i~1

Proof The function on the right in this equation is a linear combina­
tion of m +k + 3 functions. By 2.1, dim f!)2 = m +k + 3. Thus it suffices to
prove that every f!)2-function has a representation as claimed. Letfbe any
f!)2-function. Then f can be written in the form

f(s, t)=u(s)+v(t) (2)

with u and v piecewise linear functions having knots 0' 1 ... am and, 1 ... 'k,
respectively. By a well-known theorem in spline theory, Schumaker [14],
we can write

m

u(s)= L ailS-ail +as+c',
i=1

k

v(t)= L Pi It-'il +bt+c". I
i=1
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3. PATHS AND PATH FUNCTIONALS

A path is a finite ordered set in RG, [Yl' Y2, ..., Yr], such that the line
segments joining consecutive points are of positive length and are alter­
nately horizontal and vertical. (Repetitions of points are permitted.) The
number r is the length of the path.

Pictures of paths are shown below.

~
4

6 5
1 2

7

:rn3

! 5U4

A path is said to be closed if r is even, if Y r # Y 1, and if the line segment
joining Yl with Y2 is perpendicular to the line segment joining Yr with Yl .
Typical closed paths are shown below.

2%1 6

4 5

2n3_
'-tJ:

An equivalent formulation of the definition is this: the path [y l'

Y2, ..., Yr] is closed if r is even and if [Yl, Y2, ..., Y" Yl] is also a path.
If [Yl, Y2' ... , y,] is a closed path, then a linear functional, called a path

functional, is associated with it as follows:

r

<P = L (-1 ()I;.
i~l

Here y denotes the point-evaluation functional associated with the point Y;
i.e., for any function f whose domain includes Y,

Y(f)=f(y).

If r is 4, the path functional is called "the 4-point rule."

3.1. LEMMA. Any path of length n + 1 in % contains a closed path.

Proof Select a path of length n + 1 in %: [zo, zI' ... , znl Since
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# JV = n, there is a first index i such that Zi E {zo, Z I' ... , Zi __ d. Select j < i
such that Zi = Zj' Now there are several cases.

If tj=tj + 1 and ti=t i _ 1 then [Zj+I,Zj+2"",Zi_l] is a closed path. To
verify this, notice that the line segment from Zj to Zj+ j is horizontal and the
line segment from Zj + 1 to Zj + 2 must therefore be vertical. Next, since
ti_l=ti=tj=tj+l, we see that the line segment from Zi_1 to Zj+1 is
horizontal. The number of entries in the ordered set is even, by the follow­
ing reasoning. The segments joining Zv to Zv+! in the path have vertical and
horizontal orientations in the pattern

VHVHVH···VHV.

Hence there is an odd number of segments and an even number of points
Zj+I' ... , Zi_!'

If tj=tj + 1 and Si=Si_j, a closed path is [Zj,Zj+j, ...,Zi_ll Indeed the
segment from Zj to Zj+! is horizontal, and the segment from Zi_1 to Zi = Zj

is vertical. The number of entries in the ordered set is again even.
There are two remaining cases described by the conditions (Si = Sj+ 1 and

Si=Si_l) and (Sj=Sj+1 and ti=ti _ j ). These require no further proof since
they follow from the first two cases upon interchanging sand t. I

3.2. LEMMA. Let A be a nonvoid subset of JV such that # (A n L) f= 1 for
any horizontal or vertical line, L. Then A contains a closed path.

Proof Assume the hypotheses, and select any point Zo in A. The verti­
cal line L through Zo must satisfy # (A n L) ~ 2, and one can select
zjEAnL with zjf=zo. Similarly, one can select Z2 on the horizontal line
through Z I' with Z2 f= Z I' We continue in this way until we have a list of
n + 1 points [zo, Z j, ... , znl An application of 3.1 completes the proof. I

3.3. LEMMA. For a subset Z of the rectangular grid the following proper­
ties are equivalent:

(1)

(2)
f!JJff.

Z contains a closed path,

There is a nontrivial functional supported on Z that annihilates

Proof If (2) is true, let tft=L;~1 aizi annihilate f!JJff, where ZiEZ and
all coefficients a i are nonzero. Put Z' = {zI' ... , Zr }. We observe that every
horizontal and vertical line that intersects Z' does so in at least two points.
Indeed, if (for example) the vertical line through Zj contains no other Zi'

then an element f in f!lJff can be constructed that is a function of S only and
satisfies f(zi) = ()ij' Then we have the contradiction 0 = tft(f) = aj • An
application of 3.2 establishes (1).
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Now suppose that Z contains a closed path, [z l' ... , zrJ. Then the
functional cP == L;~ 1 (-1); z; annihilates C(S) + C(T), as is easily verified
by considered functions of s and functions of t separately. By 2.4 fJjJ2 is a
subspace of C(S) + C( T), and so is annihilated by cPo I

3.4. LEMMA. Any subset of the grid that contains m + k points must
contain a closed path.

Proof Let A be such a set. Let S' be the set of all a; such that the
vertical line through a; contains at least two points of A. If # S' = 0, then
each vertical grid line contains at most one point of A, and thus # A :;;; m,
contrary to hypotheses. If # S' = 1, then one vertical line contains v points
of A, with v~ 2. Each of the remaining m - 1 vertical grid lines contains at
most one point of A. Since # T= k we have the contradiction

m+k:;;;#A:;;;m-l+v:;;;m-l+k

Thus we conclude that # S' ~ 2. Similarly # T' ~ 2, where T' is the set of
r j such that the horizontal line through r j contains at least two points of
A. By 3.2, the set An (S' x T') contains a closed path. I

3.5. LEMMA. Let g and h belong to C(IR). Let .AI be a set of nodes,
X; = (s;, tJ, in 1R 2

• Let

H;(s, t) = g(s - sJ + h(t - tJ (l :;;; i:;;; n).

If .AI contains a closed path, then the functions Hi form a dependent
(indexed) set.

Proof Renumber the nodes, if necessary, so that [Xl' ..., x q ] is a closed
path. It is easily seen that the functional cP = Lr~ 1 ( -1 rX; annihilates
C(S) + C(T). Hence it annihilates the function given by (s, t)~ g(a - s) +
h(r-t) where (a,r) is any fixed point in 1R 2

• Thus

q

L (_1); {g(a-si)+h(r-tJ}=O
i~ 1

and therefore

q

L (- 1r H i ( a, r) = 0,
j=l

3.6. LEMMA. If a path [ZI,Z2, ... ,Zr] satisfies r~4 and if either
P(zd = P(zr) or Q(zd = Q(zr), then it contains a closed subpath.
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Proof Select integers p and q in {I, 2, ... , r} to minimize q - p under the
constraints

(1 ) q - p ';3 3,

(2) [P(zp) - P(Zq)] [Q(zp) - Q(Zq)] = O.

We shall prove that Zp#- Zq' Suppose that Zp= Zq' Then q - p ';3 4. Since
(p, q) is minimal, (p + 1, q) does not satisfy the constraints. Since it satisfies
(1), it does not satisfy (2). Hence P(zp+d#-P(zq) and Q(zp+d#-Q(zq).
These inequalities violate the definition of a path, and we conclude that
Zp#-Zq.

Next we prove that [zp, Zp+I' ..., Zq] is a closed path. Note that Zp#-Zq
by the preceding paragraph. With no loss of generality, we assume that the
first factor in (2) is O. By the minimality of (p, q), the segment joining Z p

to Zp+1 and the segment joining Zq_1 to Zq are both horizontal. Hence the
number of elements in the ordered set [zp, ..., Zq] is even. Finally, the
segent from zp to Zq is vertical and hence perpendicular to the segment from
zp to zp+ I' I

4. INTERPOLATION PROPERTIES OF f!jJ.2

The dimension of f!J.2 when restricted to the rectangular hull of .AI is
m + k - 1, as shown in 2.3. It is of interest to know what sets of m +k - 1
grid points are suitable as nodes for interpolation. In this section we
answer this question by exploiting the intuitive geometric idea of a path.
Although one would normally expect to compute the coefficients in an
interpolating function by inverting a linear system of order m + k - 1, a
much more economical algorithm is available.

4.1. THEOREM. The space f!jJ.2 can interpolate arbitrary data on a set of
m + k - 1 grid points if and only if that set does not contain a closed path.

Proof Let Y be a set of m + k - 1 grid points, {y I' ... , Ym + k _ d. Let
{jj: 1 ~j ~ m + k - 1} be a basis for f!J.2 restricted to RG. Interpolation is
possible if and only if the matrix (jj(yJ) is nonsingular. If Y contains a
closed path, then by 3.3, a nontrivial linear combination of the point func­
tionals y; annihilates f!jJ.2, and the matrix in question is singular. Conver­
sely, if the matrix is singular then a linear combination of its rows is 0, and
this gives an annihilating functional supported on Y. By 3.3, Y contains a
closed path. I

Now let us assume that .AI contains no closed path and that
n ~ m + k - 1. We shall give an algorithm which produces a continuous
f!J.2 interpolant for arbitrary data given on the node set .AI =
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{XI' Xl' ..., x n }. As in classical polynomial interpolation by the Lagrange
method, it suffices to construct functions II, ..., In in [Jj>2"( JV) with the
"cardinal property"

(I ~ i,j ~ n).

if s E P( "1/;) fl if t E Q(Yf;)

if s E P(Yf;\ X;), b;(t) = ; 1 if t E Q("I/;\xJ

otherwise otherwise.

TV
I

For i = 1, 2, ..., n, define the set Yf; to consist of X; and all other nodes
that can be connected to X; by a path in JV starting at X; with a horizontal
segment. Similarly, "I/; contains X; and all nodes that can be reached along
a path in JV starting with a vertical segment at X;. Figure 4.1 shows a typi­
cal situation; the nodes labeled v belong to "I/; and the nodes labeled h
belong to Yf;,

Now define a; on P( JV) and b; on Q( JV) as follows:

a,(,) ~ {;:

Finally, define I;(s, t) = ![a;(s) + b;(t)].

4.2. THEOREM. If JV contains no closed path, then a; and b; are well
defined, and I;(xj ) = Jij'

Proof Let (J E P( JV), and suppose that a;((J) is not well defined. Then
(JEP("I/;)nP(Yf;\xJ Hence there exist nodes x j and Xv such that
Xv E "1/;, xj E Yf;\x;, and P(xv)= P(xJ = (J. (Under some circumstances, Xv
can be x;.) There exists a path, starting at XV' progressing to X; and then
to Xj' By 3.6, such a path contains a closed subpath, contrary to
hypotheses.

Now observe that s;=P(X;)EP("I/;) and t;=Q(X;)EQ(Yf;). Consequently

l;(x;) = ![a;(s;) + b;(t;)] =!(1 + 1) = 1.

,v

I
I I

tv - - - - ·v- - -~v

I I
I

h-........-~h

x,

h

h_----4"­
h

FIGURE 4.1
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On the other hand, let x = (s, t) be any node other than Xi' If there is a
path from x; to x, then either x E Yt'; or x E 1/;. In these two cases we have

2/;(x) = ab) + b;(t) = -1 + 1 = 0,

2/;(x) = ai(s) + b;(t) = 1- 1 = 0,

XE Yt';

xE1/;.

If x is not connected by any path to X; then s ¢ P(1/;), s ¢ P(Yt';), t ¢ Q(Yt';),
and t ¢ Q(1/;). Consequently l;(x) = 0. I

5. DEGREE OF ApPROXIMATION BY Y'.!f'-INTERPOLANTS

In the preceding section, a necessary and sufficient condition was given
on a set of grid points in order that [l».!f'-interpolation at those points
would be possible. The natural question arises of what happens when the
grid is refined and the set of interpolation points is chosen to fill out the
rectangular hull. It turns out that in general a continuous function on RH
cannot be approximated to arbitrary precision by [l».!f'-interpolants. This is
a corollary of a more general result to which we now turn.

In the next theorem we consider functions defined in a piecewise manner
on Cartesian products. The setting will be as follows. There are two
topological spaces given, Sand T. Each is expressed as a union of non­
empty sets

We assume that S; (\ Si + 1 and Tj (\ Tj+ 1 are nonempty for 1 ~ i ~ m - 1,
1~j ~ n - 1. The notation C(S) denotes the space of continuous real­
valued functins on a topological space S. Subspaces are prescribed as
follows

G;cc(SJ(I~i~m),

It is assumed that these subspaces contain the constant functions. Three
spaces of continuous piecewise-defined functions (or "generalized splines")
are given as follows, with I signifying restriction of a function to a subset
of its domain:

G = {g E C(S): g lSi E G;, all i}

H = {h E C(T): hi TjE Hj , allj}

K = {IE C(S X T): fl (S; x Tj ) E Gi+ Hi' all i andj}.

5.1. THEOREM. The spaces G, H, and K defined above satisfy the equation
K=G+H.
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Proof It is clear that iff(s, t)=g(s)+h(t), with gEG and hEH, then
fEK, since

Thus G+HcK.
Now letfE K. We can find UijE Gi and VijE H j so that

(1 ~ i ~ m, 1 ~j ~ n ).

Suppose j> 1. Select tj E T/l Tj ~ I' Then for all S ESi we have
(s, tj ) E (S; x TJ (\ (S; x T j _ d. Hence, for such a point,

Uij(s) + vij( tj ) = Ui,j _ 1(s) + Vi,j~ I(tJ.

This proves that uij(s) - Ui,j ~ I (s) is a constant, cij ' on Si' Using this equa­
tion repeatedly, we obtain

where aij is a constant. Because of the symmetry in the situation, we obtain
a similar equaton for vij:

From a previous equation we have

Putting Yij=aij+{3ij, we have

Yij - Yi,j-I = VI,j~ I(tJ - vl/tJ = ()j'

Iterating this equation produces

Yij=Yil +()j+()j-I + "'+()2=Yil +dj.

Thus on Si x Tj we have

f(s, t) = Uil(S) + aij+ VI/t) + {3ij

= uil(s) + VI/t) + Yij

= [Uil(S)+Yil] + [vl/t)+dj].

The first bracketed expression can be denoted by g ;(s), where g i E Gi" The
second can be denoted by h/t), where hj EHj , Our analysis shows that

f(s, t)=gi(s)+h/t), (s, t) E Si X Tj ,
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This shows that there are unique functions g and h such that g lSi =gi and
hi Tj = hj for all i and j. Since f(s, t) = g(s) + h(t), the functions g and hare
continuous. I

5.2. COROLLARY. Assume the hypotheses made at the beginning of this
section. Then

{IE C(S x T):f I(Si X Tj ) E c(SJ + C(Tj ), all i andj} = C(S) + C(T).

Proof One inclusion is trivial, and the other is a consequence of the
preceding theorem, letting Gi = C(SJ and Hj = C( TJ. I

5.3. THEOREM. It is not possible to approximate with arbitrary precision
all functions in C(S x T) by use offunctions which are piecewise of the form
g(s) + h(t), no matter how finely we partition S x T into Cartesian-product
subsets.

Proof The result follows from 5.2 and the fact that the subspace
C(S) + C( T) is not dense in C(S x T). Indeed, it is annihilated by every
path functional. I

5.4. COROLLARY. There exists a function f in C(S x T) such that
dist(j, f!j> fE) ~ 1 for all grids.

6. THE SPACE qJfJI

As in Section 1, a set of nodes

is given in 1R 2
, and we define radial basis functions

The norm symbol is henceforth reserved for the II-norm on 1R2
•

We denote by qJfJI the linear space generated by the radial basis func­
tions hi (1 ~ i ~ n). This section investigates the structure of ~fJI. Since
interpolation by hi' ..., hn at a set of n nodes certainly requires the linear
independence of these functions, the first step is to characterize the sets ,AI
for which 9tfJI is of dimension n.
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6.1. LEMMA. Let (/) be a function in C I (IR) that satisfies (/)'(s»Ofor all
s. Let JV = {Xl' ... , Xn} C 1R 2

, with #JV = nand 0 ¢ JV. If the equation

n

(/)(llxlld= L ai(/)(llx-xill l )

i= 1

is valid in a neighborhood of 0, then 0 E P( JV ) and 0 E Q( JV ).

(1 )

Proof Assume the hypotheses and deny the conclusion. With no loss of
generality we suppose that 0 ¢ P( JV). Select c > 0 so that Eq. (1) is valid
for II X II < c. If necessary, reduce c so that (- c, c) contains no element of
P( JV ). If IsI< c then Eq. (1) is valid for X = (s, 0), and thus

n

(/)(lsl)= L ai(/)(Is-sil + Itil),
i~ I

lsi <c.

The function on the right in this equation is differentiable at s = 0, but the
function on the left is not. This contradiction completes the proof. I

6.2. LEMMA. Let (/) be a function in C I (IR) that satisfies (/)'(s) > 0 and
(/)(0)=0. Then any set of three functions Hi(s)=(/)(llx-xill) is linearly
independent on the corresponding set of three nodes. (In this result, any norm
can be used.)

Proof The value of the 3 x 3 determinant det(Hi(xj )) is

6.3. THEOREM. Let JV= {XI' ... , x n} C 1R 2, with #JV=n. Let (/)ECI (IR)
and satisfy (/)'(s) > 0 and (/)(0) = O. Put Hi(x) = (/)( II X - Xi II d. In order that
the indexed set [HI' ..., HnJ be linearly independent it is sufficient that JV
contain no closed path. If (/) is a linear function the condition is also
necessary.

Proof Assume that the set is dependent. With no loss of generality we
suppose that it has no proper linearly dependent subset. By 6.2, n~ 4. Let
L:7 ciHi = 0 with L:7 IC i I> O. Then C i # 0 for all i, and each Hi is a linear
combination of the others. By 6.1, each node Xi has the property that the
vertical line and the horizontal line through X i each contains another node.
It follows from 3.2 that JV contains a closed path.

To complete the proof, assume that (/) is linear and that JV contains a
closed path. If (/)(r)=ar+b, then Hi(x)=als-sil+alt-til+b. The
result now follows from 3.5. I
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6.4. LEMMA. Let x I' ... , X n be n distinct points in a normed space. Let
f(x)=L:7~1ai Ilx-xill. In order that f be bounded, it is necessary and
sufficient that L:7= I ai = 0.

Proof Put 1= {i: ai>O}, J= {i: a;<O}. For all x,

f(x) = L a; II x-xiii +L aillx-xill
I J

~L Gi(llx II + II x;ll) + L Gi(11 x II-II xiii) = II x II L ai + c,
I J

7. INTERPOLATION BY rliflJ

This section contains the central result of the paper. It is shown that the
interpolation problem

n

L Gi II x ;- xi ll l =di
i~1

(l~i~n)

has a unique solution for every data function d if and only if the set of
nodes {XI' x 2, ... , x n } contains no closed path. The work of Micchelli [9]
enables us to generalize this problem. We assume throughout this section
that F is a function fulfilling five requirements:

(Ml) F: [0, 00) --+ [0, 00),

(M2) F is Coo on (0, CJJ) and continuous at 0,

(M3) F(t»O when t>O,

(M4) F' is not constant,
(M5) (-I)" F(v+I)(t):;::O for v=O, 1,2, ..., and t>O.

Suppose that G is a function having the same properties. We consider
interpolation at the nodes by a linear combination of these functions:

In this equation, x = (s, t) and Xi = (si' ti ). The coefficient matrix A that
arises in this more general interpolation problem is given by

A=B+C
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If F and G are chosen to be the square-root function, then we recover the
original problem. Micchelli [9] establishes the following important
theorem.

7.1. THEOREM (Micchelli). If F satisfies the five conditions (MI-M5)
given above and if rl' ... , rp are distinct reals, then the p x p matrix
Dij=F((ri-rJ2) is nonsingular. Also, cTDc<Ofor every nonzero vector c

such that Lf~ 1 Cj = O.

From Micchelli's theorem, we see immediately that the rank of B is m.
Indeed, we can remove from B rows and columns which are duplicates of
other rows and columns, arriving at an m x m matrix B' whose elements
are F( ((j i - (jY). This matrix is nonsingular, by Micchelli's theorem.

Our next task is to describe a basis for ker(B). If 1~j < i ~ n, then fij
will denote a vector in IRn having 1 as its ith component, -1 as its jth
component, and 0 components elsewhere. Thus, f~ = (jil' - (jjW Define also

J = {(i,j): 1~j < i ~ n, Si = Sj, sl''= Sj if j.l <j}.

Notice that J is a function: different elements of J cannot have the same
first component.

7.2. LEMMA. A basis for ker(B) is {fij: (i,j)EJ}.

Proof First we establish that the purported basis is a subset of ker(B).
If (i, j) E J, then Bfij = 0 because

n

(BfijL= L BVl'f~=Bvi-Bvj=F((sv-sY)-F((sv-sY)=O.
I'~l

Next we prove that the purported basis is linearly independent. Suppose
that L r1.ijfij = 0, the sum being over (i,j) E J. Select any (v, j.l) E J. We shall
show that r1.VI' = O. This follows from the calculation

To justify this, we only have to prove that if f~,= 0 then (i,j) = (v, j.l). If
f~ ,= 0, then either v= i or v=j. If v= i, then (i, j) E J and (i, j.l) E J. Since J
is a function, j=j.l. If v=j we have (i,j)EJ, (j,j.l)EJ, j.l<j<i, and
si= Sj = S1" which contradicts (i, j) E J. (This case can therefore not arise.)

Lastly, we observe that J has the correct cardinality, namely n - m,
which is the dimension of ker(B). This assertion follows from the equation

m

n = # % = # P( % ) + I [# P - 1((j ;) - 1] = m + # J. I
i= 1
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7.3. LEMMA. ifuEker(B) then L7~1 ui=O and
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(l ~j~m).

Proof The first equation follows from the second by summing for
1~j ~ m (or it can be proved directly for the basis vectors in 7.2). In
proving the second equation, it suffices to verify it for anyone of the basis
vectors in ker(B) as described above. To this end, fix (tt, v) EJ and
j E {I, ..., m}. By the definitions of J and fi",

This is obviously zero unless sJ1 = (Jj or s, = (Jj' But these equations imply
each other, and if sJ1 = (Jj = s" the sum in question reduces to 1-1 = O. I

7.4. LEMMA. Ifv TBv=I.7=1 vi=O, then Bv=O.

Proof Forv=1,2, ...,mputI,={i:1~i~n,si=(J,}.Thesetsllo ...,Im
form a partition of {I, 2, ..., n}. Hence any sum of the form L7= 1 can be
expressed as a double sum L~=I LiE/,. We observe also that if iEI, and
jEIJ1 then

Now assume the hypotheses and put v~ = LiE I, Vi' Applying the above
principles we have

n n m m

O=vTBv= L L Bijvivj = L L L L B~J1ViVj
i= 1j~ 1 v= 1iE/, J1~ljE/"

m m

=" " B' v'v' =(V')T B'v'~ L.." VJ1 1,1 Jl •

v = 1 J1~ 1

Notice also that L~~ 1 v~ = L7~ 1 Vi = O. Since the points (J, are distinct, the
matrix B' has the properties in Micchelli's theorem (7.1). Hence by 7.1,
v' = O. It follows that Bv = 0 by the calculation

n m m

(BV)i= L Bijvj = L L Bijvj = L L F«Si-(JJ1)2 Vj
j=1 J1=ljE/" J1=ljE/"

m

~ L F«Si-(JIY)V~=O. I
J1=1

7.5. LEMMA. if U Eker(B), then every vertical line that intersects the set
r(u) = {XiE JV: U j # O} contains at least two points of r(u).
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Proof Let X;Er(U) so that u;;60. By 7.3

Thus there must exist at least one index j, different from i, for which uj ;6°
and Sj = s;. Then xj is an element of r(u) on the vertical line through Xi. I

7.6. LEMMA. If ker(B) n ker( C) ;6°then JV contains a closed path.

Proof Suppose that u is a nonzero vector in ker(B) n ker( C). Then
r(u) is nonvoid. By 7.5, every vertical line that intersects r(u) contains at
least two points of F(u). Applying the same lemmas to C shows that every
horizontal line that intersects r(u) contains two points of r(u). By 3.2,
r(u) contains a path and, a fortiori, so does JV. I

7.7. THEOREM. Let JV be a set ofn distinct points x;= (s;, t;)E 11;£2. Let F
and G befunctions satisfying hypotheses (M 1)-(M5) above. The n x n matrix A
defined by

Ai} = F( (s; - Sj)2) + G((t; - tj )2),

is singular if and only if JV contains a closed path.

Proof If JV contains a closed path, then the functions

g;(.s, t) = F( (s - sY) + G((t - tY),

form a dependent set (by 3.5), and thus A is singular.

Now let v be any vector such that v;6° and vTe = 0, where
e = (1, 1, ... , 1f. If the points S1' S2' ••• , Sn were distinct, then 7.1 would
imply vTBv < 0. Since the points s; are not necessarily distinct, a limit
argument yields vTBv ~ 0. Similarly vTCv ~ 0. Hence

Since A is symmetric, its eigenvalues are real and can be ordered
Al ~ ,1.2 ~ ... ~ An. Since eTAe > 0, it follows from the Courant-Fischer
("minimax") theorem that )on > 0. Using this result again, we have

An-I = min max vTAv~ max vTAv~O.
dim V=n-l VE V vTe=O

II vII ~ I II vii ~ 1

Now assume that A is singular. Then An _ I = 0, and hence there is a vector
v satisfying IIvll =1, vTe=O, vTAv=O. It follows that vTBv=vTCv=O. By
7.4, v E ker(B) n ker( C), and by 7.6, JV contains a closed path. I
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7.8. COROLLARY. Let JV be a set of n distinct points Xi = (s;, t;) in [R2.

Let 0 < (J. < 2. The n x n matrix A given by

Aij= ISi-sjla+ Iti-tjla

is singular if and only if JV contains a closed path.

Proof In 7.7, let F(u) = G(u) = ua
/
2

. I

The results of this section are extended in [3] to interpolation by sums of
radial functions.

8. RADIAL BASIS FUNCTIONS WITH THE MAXIMUM NORM

All of what has been proved for radial basis functions with the II-norm
can be proved, mutatis mutandis, for the loo-norm. This assertion depends
upon the isometry between W) and lr;,> that must exist because of the
similarity in the unit spheres in these two spaces. (See the figure.)

The isometry from W> to lr;,) is given by (s, t) -+ (s + t, s- t).
Given JV = {XI' X 2' ... , x n } C [R2, our basis functions are now

hiX ) = II X - x j II 00 = max [I s - Sj I, It - tj I].

The notion of a path must now be modified; we refer to the new concept
as an loo-path. It is an ordered set of points [z I> Z2' ... , ztJ such that the line
segments joining successive points are of positive length and have inclina­
tions alternately 45° and 135°.

The grid lines generated by JV consist now of lines with inclinations 45°
and 135° through points of JV.

8.1. THEOREM. Let JV be a set of n points, Xi' in [R2. The functions

640/59/2-7
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X H II X - xiii OCJ (1 ~ i ~ n) are capable of interpolating arbitrary data on %
if and only if % contains no closed I£path.

The preceding considerations provide an example of the following
general principle. If functions fl' ... , fn are capable of interpolating arbitrary
data at nodes X I' ... , X m' and if L is a nonsingular linear transformation,
then the functions fl 0 L - I, ...,fn a L - I are capable of interpolating arbitrary
data at nodes LXI' ..., Lxm .

9. GENERALIZATIONS TO HIGHER-DIMENSIONAL SPACES

The basic interpolation results of Section 7 can be generalized to the
space IR d

, d? 2. To describe the results, a somewhat different formalism
from that used in the previous sections is needed.

If X is a point in IR d
, we write X = (~ l' ~ 2, ... , ~ d)' Coordinate functionals

Pi are defined by setting Pi(X) = ~i' A function f: IR d -+ IR is said to be
degenerate if it has the form f = I.1 gi 0 Pi for suitable g i: IR -+ IR. Such a
function f is a sum of univariate functions. The space of all degenerate
functions on IR d is denoted by ~.

Iff is a function on a finite set S= {Sl' S2' ... , sn}, we write

Note that if f is not injective, the sum will contain repeated terms. That is
why we eschew the notation I. {f(s): s E S }, which-if strictly interpreted­
means a sum without repetitions.

9.1. LEMMA. In order that a functional of the form ¢J = I. f Ci Yi annihilate
~ it is necessary and sufficient that for all t E IR and for all vE {1, 2, ..., d},

Proof Let g: IR -+ IR, and fix v. Let

We have then

N

¢J(gopv)= I cig(Pv(Yi)) = I I [cig(Pv(Yi)):Pv(y;)=t]
i~ I tEA

= I g(t) I [ci:pv(y;) = t].
tEA
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The sufficiency of the given condition is now clear. For the necessity, select
tEA, and construct g so that g(t)= 1 and g(s)=O for all sEA\{t}. The
preceding calculation gives us

If vI' v2 , ••• , Vn are elements in a vector space, we adopt the usual
meaning for linear dependence of the indexed set [VI' V2, ... , Vn ]. It can
happen that the unindexed set {v I' v2 , ... , Vn} is linearly independent while
[VI' V2 , ... , vn ] is linearly dependent.

9.2. LEMMA. The following properties of a set JV = {xI' x 2 , ••• , x n } in [Rd

are equivalent:

(a) There is a nonzero functional in .@l- that is supported on JV.

(b) For every fE.@, the indexed set of translates xHf(x-xJ is
linearly dependent.

Proof Let E u denote the translation operator, defined by (EuF)(x) =
F(x - u). Define an operator B by putting (BF)(x) = F( -x). Let
</J="L7=1 CiX;, and assume that </JE.@l-. IffE.@, then EuBfE.@, and conse­
quently

This proves that (a) implies (b). Observe that the proof requires of'@ only
its invariance under the operators Band E u • For the other half of the
proof, assume (b). Let f E.@. Then BfE.@, and by (b) there exist coefficients
Ci, not all zero, such that L ciExiBf=O. Evaluating at 0, we have

Now select functions F l , F2 , ••• , Fd satisfying the five axioms (Ml)-(M5)
of Section 7. Define

d

H(x) = I F v«Pv(x)2),
v= 1

As before a set of nodes is given: JV = {Xl> x 2 , ••• , x n }, with XiE [Rd. Inter­
polation at the nodes by the x;-translates of H requires the nonsingularity
of the interpolation matrix A given by

(1 ~ i,j ~ n).
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It is clear from the definition of H that A is the sum of matrices A (v) given
by

(1 ~ v~ d).

9.3. LEMMA. If the matrix A is singular, then there exists a vector u E IR n

such that u,iO, uTe=O, and A(v)u=Ofor 1~v~d.

Proof Proceed exactly as in the proof of 7.7, obtaining thereby a vector
u having the desired properties. I

9.4. THEOREM. The following are equivalent properties of the node set .AI:

(a) The interpolation matrix A is singular;

(b) There is a linear dependence among the n basis functions
xHH(x-x;).

Proof That (b) implies (a) is obvious. Assume that (a) is true. By the
preceding lemma, there is a nonzero vector u such that A (v)u =° for
1~ v~ d. By 7.3, we have

(t E IR, 1~ v ~ d).

By Lemma 9.1, the functional L: u;x; annihilates f0. By Lemma 9.2, the set
of functions Ex,H is linearly dependent. I

The geometrical characteristics of .AI that are equivalent to Properties
(a) and (b) in 9.4 will be explored in the second half of this paper.

Notice that if d> 2, the theory of radial basis functions using the
loo-norm is not a simple consequence of the theory in the case of the
II-norm. This is because there is no isometric isomorphism between the
spaces IR d when these two norms are used. For example, the unit balls in
[R3 are a cube and an octahedron for these two norms.
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